Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Clin Infect Dis ; 2022 Aug 08.
Article in English | MEDLINE | ID: covidwho-2233374

ABSTRACT

BACKGROUND: Many interventional in-patient COVID-19 trials assess primary outcomes through day 28 post-randomization. Since a proportion of patients experience protracted disease or relapse, such follow-up period may not fully capture the course of the disease, even when randomization occurs a few days after hospitalization. METHODS: Among adults hospitalized with COVID-19 in Eastern Denmark from March 18, 2020 - January 12, 2021 we assessed: all-cause mortality, recovery and sustained recovery 90 days after admission, and readmission and all-cause mortality 90 days after discharge. Recovery was defined as hospital discharge and sustained recovery as recovery and alive without readmissions for 14 consecutive days. RESULTS: Among 3,386 patients included in the study 2,796 (82.6%) reached recovery and 2,600 (77.0%) achieved sustained recovery. Of those discharged from hospital, 556 (19.9%) were readmitted, and 289 (10.3%) died. Overall, the median time to recovery was 6 days (Interquartile range (IQR), 3-10), and 19 days (IQR, 11-33) among patients in intensive care in the first two days of admission. CONCLUSIONS: Post-discharge readmission and mortality rates were substantial. Therefore, sustained recovery should be favored to recovery outcomes in clinical COVID-19 trials. A 28-day follow-up period may be too short the critically ill.

2.
Sci Rep ; 12(1): 21019, 2022 Dec 05.
Article in English | MEDLINE | ID: covidwho-2151106

ABSTRACT

Spatial resolution in existing chest x-ray (CXR)-based scoring systems for coronavirus disease 2019 (COVID-19) pneumonia is low, and should be increased for better representation of anatomy, and severity of lung involvement. An existing CXR-based system, the Brixia score, was modified to increase the spatial resolution, creating the MBrixia score. The MBrixia score is the sum, of a rule-based quantification of CXR severity on a scale of 0 to 3 in 12 anatomical zones in the lungs. The MBrixia score was applied to CXR images from COVID-19 patients at a single tertiary hospital in the period May 4th-June 5th, 2020. The relationship between MBrixia score, and level of respiratory support at the time of performed CXR imaging was investigated. 37 hospitalized COVID-19 patients with 290 CXRs were identified, 22 (59.5%) were admitted to the intensive care unit and 10 (27%) died during follow-up. In a Poisson regression using all 290 MBrixia scored CXRs, a higher MBrixia score was associated with a higher level of respiratory support at the time of performed CXR. The MBrixia score could potentially be valuable as a quantitative surrogate measurement of COVID-19 pneumonia severity, and future studies should investigate the score's validity and capabilities of predicting clinical outcomes.


Subject(s)
COVID-19 , Humans , COVID-19/diagnostic imaging , SARS-CoV-2 , Radiography, Thoracic/methods , X-Rays , Retrospective Studies
3.
Sci Rep ; 12(1): 13879, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-1991668

ABSTRACT

Interpretable risk assessment of SARS-CoV-2 positive patients can aid clinicians to implement precision medicine. Here we trained a machine learning model to predict mortality within 12 weeks of a first positive SARS-CoV-2 test. By leveraging data on 33,938 confirmed SARS-CoV-2 cases in eastern Denmark, we considered 2723 variables extracted from electronic health records (EHR) including demographics, diagnoses, medications, laboratory test results and vital parameters. A discrete-time framework for survival modelling enabled us to predict personalized survival curves and explain individual risk factors. Performance on the test set was measured with a weighted concordance index of 0.95 and an area under the curve for precision-recall of 0.71. Age, sex, number of medications, previous hospitalizations and lymphocyte counts were identified as top mortality risk factors. Our explainable survival model developed on EHR data also revealed temporal dynamics of the 22 selected risk factors. Upon further validation, this model may allow direct reporting of personalized survival probabilities in routine care.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Machine Learning , ROC Curve , Retrospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL